Competitive counterion binding and hydration change of Na poly(acrylate)/MgCl₂, CaCl₂ in aqueous solution

Mitsuru Satoh*, Masahiko Hayashi, Jiro Komiyama and Toshiro lijima† Department of Polymer Science, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan (Received 15 May 1989; revised 12 June 1989; accepted 13 June 1989)

Dehydration upon divalent counterion binding has been studied by means of counterion activity, density and sound-velocity measurements for aqueous solutions of Na poly(acrylate)/MgCl₂ or CaCl₂ and Na poly(L-glutamate)/MgCl₂. The dehydration number and dehydration fraction (ratio of dehydration number to total hydration number) of the following two types of binding reactions, $2(-COO^{-}Na^{+}) + M^{2^{+}} \rightarrow (-COO^{-})_2 M^{2^{+}} + 2Na^{+}$ and $2(-COO^{-}) + M^{2^{+}} \rightarrow (-COO^{-})_2 M^{2^{+}}$, were estimated from compressibility data obtained from the density and sound-velocity measurements. It has been suggested that the dehydration fraction of the former reaction, which includes the hydration change of Na⁺ ions upon reaction, serves as a measure of the relative binding strength of the divalent cations, while the dehydration fraction of the latter reaction serves as a measure of the binding mode.

(Keywords: competitive counterion binding; polyelectrolyte; hydration; counterion activity; compressibility)

INTRODUCTION

In most studies on counterion binding in polyelectrolyte solutions, dehydration of the charged groups upon binding has been observed¹⁻⁸. In these studies, the observed hydration changes have often been correlated with the binding modes of the relevant ions, namely so-called 'site binding' or specific binding and 'atmospheric binding' or non-specific binding. Since the studies by Strauss et al.^{1,2} on 'site binding' in polyelectrolyte solutions, dehydrative counterion binding has been linked to the site-binding mode. On the other hand, 'atmospheric binding' has been linked to counterion binding that is not accompanied by appreciable dehydration. However, it seems that actual dehydration behaviour upon counterion binding can hardly be elucidated by the extreme concepts included in these two binding modes. For example, certain multivalent counterions attracted to polyions through non-specific electrostatic interactions may lose their outer-sphere water of hydration upon 'atmospheric' binding, since these ions maintain multilayer electrostrictive hydration. As a matter of fact, counterion condensation theories 9-12, which were first developed for atmospheric counterion binding, have been successfully applied to polyion systems in which divalent counterions are bound with appreciable dehydration (e.g. poly(styrene sulphonate), dextran sulphate/Mg²⁺, Ca²⁺)^{13,14}. Therefore, it seems necessary to reconsider the correlation between counterion binding modes and dehydration behaviour.

In a recent paper, we have reported a theoretical and

experimental study on competitive counterion condensation between mono- and divalent counterions in polyelectrolyte solutions¹⁵. Our theoretical model for non-specific counterion condensation, the intermediate model (IMM)¹², could quantitatively predict both monoand divalent counterion activity coefficients in Na poly(styrene sulphonate) (PSSNa)/MgCl₂ or CaCl₂ systems. However, for Na poly(L-glutamate) (PLGNa)/ MgCl₂, CaCl₂ systems, the theory turned out to overestimate the divalent counterion activity coefficients. It is known that counterion binding in the former polyion systems is non-specific, with slight dehydration, while the divalent counterion binding onto carboxylic polyanions is accompanied by substantial dehydration. Therefore, we suggested in the paper¹² the possibility that dehydration upon and the strength of divalent counterion binding are properly correlated through experimental activity coefficients; counterions specifically interacting with polymer charges would show lower activity coefficients than those predicted by the IMM and larger dehydration than non-specific cases.

In the present study, we examine the dehydration and counterion activity behaviour for Na poly(acrylate) (PAANa)/MgCl₂ or CaCl₂ systems. The counterion binding in these systems has been linked to the site-binding mode. The dehydration numbers for divalent counterion binding were estimated from compressibility data. Changes in the activity coefficients were measured as a function of the divalent ion/polyion concentration ratio, C_2/C_p . The latter results were also compared with the theoretical prediction by the IMM. We discuss the correlation between the degree of dehydration and the strength of counterion binding estimated from the activity data.

^{*} To whom correspondence should be addressed.

[†] Present address: Jissen Women's College, Oosakaue, Hino, Tokyo 191, Japan.

EXPERIMENTAL

Sodium poly(acrylate) (PAANa, $M_v = 99\,000$) was purchased from Nihon Jun-yaku Co. Sodium poly(L-glutamate) (PLGNa, $Mv = 66\,000$) was obtained by saponification of poly(γ -methyl-L-glutamate) (Ajicoat A-2000)¹⁶, kindly supplied by Ajinomoto Co., in an aqueous alcohol mixture. Low-molecular-weight substances in the polymer samples were removed by ultrafiltration through Ultrafilter UP-20 (Toyo Roshi).

The density and sound velocity of each polymer solution $(C_p = 0.025 \text{ base mol } 1^{-1})$ were measured at $25 \pm 0.005^{\circ}$ C in the absence and presence of divalent cations $(Mg^{2+}, Ca^{2+}, Ba^{2+})$. The experimental errors were within 2×10^{-6} g cm⁻³ and 2 cm s⁻¹ for the density and sound-velocity measurements, respectively. The molar ratio of the divalent salts to the polymers, C_2/C_p , was varied from 0 to 0.4 for poly(acrylic acid) (PAA) and 0 to 0.5 for poly(L-glutamic acid) (PLG). In the former systems, the addition of divalent cations induces polymer precipitation above $C_2/C_p = 0.4$. Details of the density and sound-velocity measurements have been described elsewhere⁸.

Counterion activities were measured with ion-selective electrodes: Orion 97-11 for Na⁺, Orion 93-32 for Mg²⁺ and Orion 93-20 for Ca²⁺ in conjunction with an Orion 90-02 double-junction reference electrode. Measurements were not performed on Ba²⁺ because no proper ion electrode was available. The electrode potential was measured by an Orion 901 Ionanalyser. Interference from H⁺ was negligible since the pH values of PAANa and PLGNa aqueous solutions were higher than 7.0. All the activity measurements were performed at $25 \pm 0.01^{\circ}$ C.

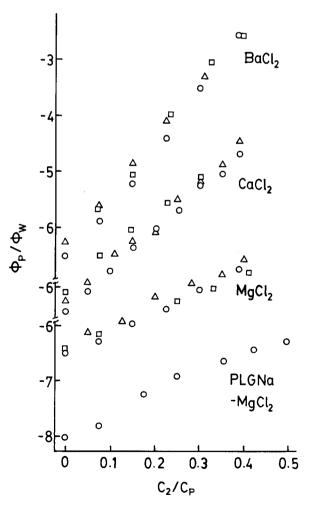
RESULTS AND DISCUSSION

The apparent molar compressibility, ϕ_p , of a polyion is given by:

$$\phi_{\rm p} = 10^3 (\beta d_{\rm s} - \beta_{\rm s} d) / C_{\rm p} d_{\rm s} + \beta_{\rm s} M_0 / d_{\rm s} \tag{1}$$

where

$$\beta = 1/u^2 d \tag{2}$$


is the adiabatic compressibility of the polymer solution, u is the sound velocity, d is the density, M_0 is the molecular weight of the monomer residue, and subscript s means the solvent. In the present study, 'solvent' means aqueous solution of alkaline-earth-metal chlorides and/or NaCl. The compressibility ϕ_p contains contributions from hydration water around the polyion. Since the molar compressibility of electrostrictional hydration water (ϕ_w)¹⁷, ϕ_p decreases (becomes more negative) with increase in the ionic hydration.

In Figure 1, ϕ_p/ϕ_w vs. C_2/C_p plots are shown for PAANa/MgCl₂, CaCl₂, BaCl₂ and PLGNa/MgCl₂ systems. Since divalent counterions compete much more favourably with monovalent ones for binding onto polyions, dehydration due to divalent counterion binding is mainly responsible for the increase in $-\phi_p/\phi_w$ with the addition of divalent counterions. According to counterion condensation theories, including the IMM¹², one divalent counterion exchanges with nearly two moles (1.9–1.7) of monovalent counterion and almost all of the former condense onto the polyion at $C_2/C_p \leq 0.2$ (ref. 15). However, one mole–one mole exchange has also been predicted; Miyamoto and Imai¹⁸ have applied the Fokker-Planck equation to thin rod-like polyions. They obtained a new additivity rule, i.e. $\Delta a_{Na} = \Delta(C_2 - a_2)$, which means that one bound divalent counterion releases one monovalent counterion. Therefore they used the ratio $\Delta a_{Na}/\Delta(C_2 - a_2)$ as a measure of the exchange pattern¹⁹: the ratios at $C_2/C_p < 0.25$ were 1.3 for poly(vinyl sulphonate)/Cu²⁺, 1.7 for poly(styrene sulphonate)/Cu²⁺ and 2.0 for dextran sulphate/Cu²⁺ systems. The same ratios for PAANa/Mg²⁺ and Ca²⁺ estimated from the data in *Figures 2* and 3 are about 1.5–1.8 in the same C_2/C_p range. This indicates that one mole-two mole exchange rather than one mole-one mole exchange is to be assumed for the present systems. Therefore, the 'overall' dehydration number n_{DH}° for the reaction:

$$2(-COO^{-}Na^{+}) + M^{2+} \rightarrow (-COO^{-})_{2}M^{2+} + 2Na^{+} (3)$$

was roughly estimated here from the initial slope of the plot in *Figure 1*.

The slopes of the ϕ_p/ϕ_w vs. C_2/C_p plots for PAANa/BaCl₂ and PLGNa/MgCl₂ systems were calculated by least-squares analysis on the data obtained at $C_2/C_p < 0.25$. In the case of the PAANa/CaCl₂ system, however, the least-squares calculation was done with all the experimental data, since the linear increase in ϕ_p/ϕ_w continues up to $C_2/C_p = 0.4$. The dehydration numbers n_{DH}^o in the absence of supporting NaCl are indicated in the third column of *Table 1*. The values for PAA systems in the

Figure 1 Dependence of ϕ_p/ϕ_w on C_2/C_p for PAANa/MgCl₂, CaCl₂, BaCl₂ and PLGNa/MgCl₂ systems: (\bigcirc) $C_{\text{NaCl}} = 0$ M, (\triangle) 0.025 M, (\Box) 0.05 M

Table 1 Hydration $(n_{\rm H})$ and dehydration $(n_{\rm DH})$ numbers and dehydration fractions $(f_{\rm DH})$

Ion or process	n _H	n ^o _{DH}	n ⁱ DH	$f^{\mathfrak{o}}_{\mathbf{DH}}$	$f^{ m i}_{ m DH}$
Na ⁺	4.4ª				
	10.0 ^a				
Mg ²⁺ Ca ²⁺	9.0ª				
Ba ²⁺	11.0 ^a				
PAACOO ⁻	4.2 ^b				
$PAACOO^{-} + Na^{+}$	$8.6^{c}, 6.3^{d}$	(1.5^{g})	2.3 ^b		0.27
$2PAACOO^{-}Na^{+} + Mg^{2+}$	23 ^e , 18 ^f	$3.7 (8.7^{9}, 10^{h})$	8.3	0.16	0.45
$2PAACOO^{-}Na^{+}+Ca^{2+}$	$22^{e}, 17^{f}$	$7.2(13^g)$	12	0.33	0.68
$2PAACOO^{-}Na^{+} + Ba^{2+}$	$24^{e}, 19^{f}$	$8.7(12^{h})$	13	0.37	0.69
$2PLGCOO^{-}Na^{+} + Mg^{2+}$	$27^{e}, 18^{f}$	4.6	4.6	0.17	0.25

^a Estimated by Bockris et al. on compressibility data (ref. 24)

^b Estimated by the present authors (ref. 8)

^c Values for the unbound state (ref. 8)

^d Values for the bound state (ref. 8)

^e Values containing $n_{\rm H}$ of the bound Na⁺

^f Values for the free COO^- and M^{2+}

⁹ Estimated by Strauss et al. (ref. 1)

^h Estimated by Ikegami et al. (ref. 6)

presence of 0.025 M and 0.05 M NaCl are lower, at most by $\sim 10\%$, than the tabulated values.

If Na⁺ ions are bound to the carboxyl anion groups with some dehydration, the n_{DH}^{o} values corresponding to reaction (3) include the hydration change due to the liberation of the bound Na⁺ ions. To obtain the 'intrinsic' dehydration number n_{DH}^{i} corresponding to the hypothetical process of divalent counterion binding:

$$2(-COO^{-}) + M^{2+} \rightarrow (-COO^{-})_2 M^{2+}$$
 (4)

twice the dehydration number for Na⁺ ion binding must be added to the n_{DH}^{o} values. As reported in our preceding paper⁸, Na⁺ binding onto PAA occurs with partial dehydration of ~ 2.3 mole/bound ion pair at its full neutralization state. On the other hand, the dehydration number in the case of Na⁺ ion binding onto PLG anion seems to be trivial, for the following reason. As seen in Figure 1, ϕ_p/ϕ_w for PLGNa at $C_2/C_p=0.0$ is ca. -8.1, which is smaller than that of PAANa, -6.5. This implies that PLGNa is less dehydrated upon Na⁺ binding than PAANa. As a matter of fact, the ϕ_p/ϕ_w value of PLGNa is very close to a calculated ϕ_p/ϕ_w value, -8.2, for hypothetical PAANa in which all the bound Na⁺ ions, the fraction of which is estimated to be ~ 0.64 by the IMM, retain their hydration intact. Therefore we conclude that Na⁺ ions are bound to PLG anion without significant hydration changes. In the fourth column of Table 1 are shown $n_{\rm DH}^{\rm i}$ values thus obtained.

For comparison, some literature values for n_{DH}^{o} are shown in parentheses. Strauss *et al.*¹ measured the volume change, ΔV , for the binding reactions of Na⁺, Mg²⁺ and Ca²⁺ onto the tetramethylammonium salt of poly(acrylic acid) (PAATMA). The n_{DH}^{o} values in parentheses were obtained by dividing the reported ΔV values by 2.7 (cm³ mol⁻¹), the molar volume contraction of water due to electrostrictive hydration²⁰. The n_{DH}^{o} values thus obtained for Mg²⁺ and Ca²⁺ binding are in good agreement with the present estimations for n_{DH}^{i} . This seems reasonable because the hydration change of TMA cation upon counterion binding has been assumed to be negligible⁴. Ikegami *et al.*⁶ estimated n_{DH}^{o} values for Mg²⁺ and Ba²⁺ binding to the tetrabutylammonium salt of poly(acrylic acid) (PAATBA). It is found that the dehydration numbers of Mg²⁺ and Ba²⁺ are appreciably larger or smaller than the respective n_{DH}^{i} values. This may be attributed not only to the difference in the experimental methods (compressibility and refractive index) but also to the hydrophobic interaction between TBA cation and the polyanion^{4,21}.

In the last two columns in *Table 1* are the two types of dehydration fractions, $f_{DH}^{o} = n_{DH}^{o}/(n_{H}^{o})_{total}$ and $f_{DH}^{1} =$ $n_{\rm DH}^{\rm i}/(n_{\rm H}^{\rm i})_{\rm total}$. The total hydration numbers, $(n_{\rm H})_{\rm total}$, for $2(-COO^-Na^+)$ or $2(-COO^-) + M^{2+}$ were estimated from $n_{\rm H}$ values of the components in the second column. The $n_{\rm H}$ value of PAACOO⁻ was substituted for that of PLGCOO⁻. We consider that the dehydration fractions, $f_{\rm DH}^{\rm o}$ and $f_{\rm DH}^{\rm i}$ are more directly correlated with the binding mode or strength than are the dehydration numbers. Since f_{DH}° is the overall dehydration fraction including rehydration of Na⁺ repelled by divalent counterions, it may serve as a measure of the binding strength of competitive counterion binding. The $f_{\rm DH}^{\rm i}$ values will provide information on the binding mode and strength of the divalent counterions in the absence of Na⁺ ions. The high $f_{\rm DH}^{i}$ values of Ba²⁺ and Ca²⁺ binding suggest that these counterions form contact ion pairs or solventshared ion pairs with the carboxyl anions. The present dehydration numbers, for example, indicate that only five or six hydration water molecules remain to dangle about one Ca^{2+} and two carboxyl anions in the binding state. The f_{DH}^{i} values of PAA⁻/Mg²⁺ and PLG⁻/Mg²⁺, which are lower than those for Ca^{2+} and Ba^{2+} , seem to be significant in that a fraction of the hydration water molecules may participate in the formation of a solvent-shared ion pair²². It should be remarked that, even though one mole-one mole exchange is assumed, these interpretations need no alteration in qualitative sense. In the following, the experimental results on counterion activity coefficients and their correlation with the dehydration fractions are examined.

In Figure 2, the a_2/C_2 values obtained for PAANa/MgCl₂ and CaCl₂ systems are plotted against C_2/C_p . Ca²⁺ ion activity was also measured in the presence of 0.025 M and 0.05 M NaCl. The theoretical curves obtained by the IMM, as shown in Figure 2, disagree essentially with the experimental data for the Ca²⁺ ion. The theoretical curve for 0 M NaCl still deviates upwards from the experimental a_2/C_2 values of the PAANa/MgCl₂ system. Such an overestimation of a_2/C_2 by the IMM has also been found for

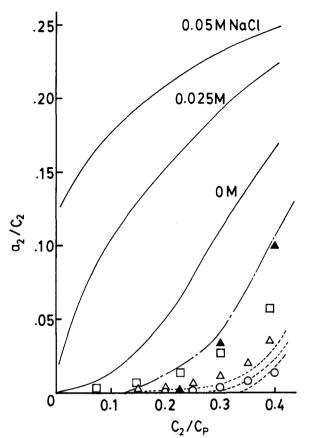
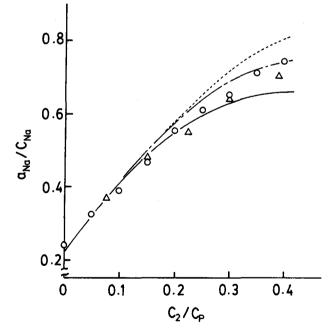



Figure 2 Activity coefficients of Mg^{2+} and Ca^{2+} and the theoretical estimations for PAANa system: () Ca^{2+} , $C_{NaCI} = 0$ M; (\triangle) Ca^{2+} , 0.025 M; (\square) Ca^{2+} , 0.05 M; (\triangle) Mg^{2+} , 0 M. Theoretical curves are obtained by the IMM: (\longrightarrow) Ca^{2+} and Mg^{2+} ions; (--) Ca^{2+} with $\Delta E_{ex} = -3.9$ kcal mol⁻¹; (---) Mg^{2+} with $\Delta E_{ex} = -1.2$ kcal mol⁻¹

Figure 3 Activity coefficients of Na⁺ and the theoretical estimations for PAANa/MgCl₂: (()) CaCl₂, (\triangle) MgCl₂; (----) $\Delta E_{ex} = -3.9$ kcal mol⁻¹; (-----) $\Delta E_{ex} = -1.2$ kcal mol⁻¹

PLGNa/MgCl₂, CaCl₂ systems¹⁵. In the previous paper, these discrepancies were corrected by assuming 'extra interaction energy ΔE_{ex} ' for divalent counterion binding. With a value of -1.5 kcal mol⁻¹ for ΔE_{ex} , both a_2/C_2 and a_{Na}/C_{Na} values could be quantitatively reproduced by the

IMM. The same correction method was applied to the present results. The chain curve in Figure 2 was drawn by assuming $\Delta E_{ex} = -1.2 \text{ kcal mol}^{-1}$ for Mg²⁺ in the PAANa system. The agreement with the experimental data is fairly good. This ΔE_{ex} value is comparable to that for Mg²⁺ in the PLGNa system, $-1.5 \text{ kcal mol}^{-1}$. For Ca²⁺, the corrected curves (broken curves) were drawn with $\Delta E_{ex} = -3.9 \text{ kcal mol}^{-1}$ so as to reproduce the experimental a_2/C_2 values in the absence of NaCl. This large negative ΔE_{ex} value implies that the binding of Ca²⁺ onto PAA⁻ is much stronger than those of counterion condensation mode. With these ΔE_{ex} values, corrected curves for a_{Na}/C_{Na} were drawn in Figure 3. The agreement with the experimental values is not effectively improved as compared with the original one. The higher a_{Na}/C_{Na} curve for the Ca²⁺ system is due to the higher interaction energy assumed for Ca²⁺ than for Mg²⁺.

Finally, we compare the ΔE_{ex} values obtained for PAANa/Mg²⁺, Ca²⁺ and PLGNa/Mg²⁺ systems with the respective dehydration fraction values, f_{DH}^{o} and f_{DH}^{i} . Since ΔE_{ex} is a measure of the strength of counterion binding on the basis of the condensation mode and hence implicitly includes the energy to repel Na⁺ ions, it is expected that ΔE_{ex} may be correlated with the overall dehydration fraction f_{DH}^{o} , which contains the hydration change of the repelled Na⁺ ions. As a matter of fact, not only the order of ΔE_{ex} values for PAANa/Ca²⁺, Mg²⁺ and PLGNa/Mg²⁺ systems $(-3.9, -1.2, -1.5 \text{ kcal mol}^{-1})$ respectively), but also the relative largeness is in accordance with that of f_{DH}^{o} values (0.33, 0.16, 0.17, respectively). Thus degrees of dehydration measured by $f_{\rm DH}^{\rm o}$ seem to be related to the binding strength of divalent counterions for reaction (3) measured by ΔE_{ex} . If we also assume the same correlation for the f_{DH}^{i} values and the intrinsic binding strength for reaction (4), the higher f_{DH}^{1} value for PAA⁻/Mg²⁺ than for PLG⁻/Mg²⁺ means that the intrinsic binding strength for reaction (4) of Mg²⁺ with PAA⁻ is higher than that with PLG⁻. In fact, the stronger binding of Mg^{2+} with PAA⁻ is manifest in precipitation at higher level of addition of Mg²⁺ $(C_2/C_p > 0.4)$. It should be noted here that the above correlation is between the dehydration fractions and the 'extra' binding strength. No correlations are to be expected between these dehydration parameters and 'overall' counterion binding strength or binding degrees. This is because even for polyelectrolytes such as PLGNa and PSSNa, which are hardly dehydrated upon counterion binding, the thermodynamic binding degrees are as large as those of polyelectrolytes subject to dehydration counterion bindings, e.g. PAA.

From the above discussion, one may infer that divalent counterion binding is greatly affected by the species of coexisting monovalent counterions. Such ion specificity in competitive counterion binding has been reported by Kwak *et al.*²³. These authors found that Ca^{2+} binding onto dextran sulphate in the presence of Na⁺ is higher by 10–30% than in the presence of K⁺. The specificity in counterion binding is explained by the relative binding affinity of the monovalent ions onto the polyelectrolyte: sulphate anion groups are apt to favour larger alkali cations in counterion binding¹.

CONCLUSIONS

In the present study, the correlation between counterion activity coefficients and dehydration was examined for divalent counterion binding in PAANa/MgCl₂, CaCl₂ and PLGNa/MgCl₂ systems. We have proposed a sophisticated correlation between $f_{\rm DH}^{\circ}$ and $\Delta E_{\rm ex}$ instead of the direct correlation assumed for degrees of dehydration and site binding. According to the former correlation, the atmospheric counterion binding mode ($\Delta E_{ex} = 0$) is assigned even to polyion systems in which dehydrative counterion binding occurs (e.g. for PSS^-/Mg^{2+} , Ca^{2+} systems, $\Delta E_{ex} = 0$ and $n_{DH} = 3-5)^{15}$. The present study also indicates that the difference between f_{DH}^{o} and f_{DH}^{i} , in other words hydration changes accompanying the binding of competing monovalent counterions, is one significant factor that should be taken into consideration when comparing the binding strength of divalent counterions in terms of degrees of dehydration.

REFERENCES

- Strauss, U. P. and Leung, Y. P. J. Am. Chem. Soc. 1965, 87, 1476
- Hen, J. and Strauss, U. P. J. Phys. Chem. 1974, 78, 1013 2
- Tondre, C. and Zana, R. J. Phys. Chem. 1972, 76, 3451 3
- Tondre, C., Kale, K. M. and Zana, R. Eur. Polym. J. 1978, 14, 4 139

- Karenzi, P. C., Meurer, B., Spegt, B. and Weill, G. Biophys. 5 Chem. 1979, 9, 181
- Ikegami, A. and Imai, N. J. Polym. Sci. 1962, 56, 133 6
- 7 Koda, S., Nomura, H. and Nagasawa, M. Biophys. Chem. 1985, 23. 147
- 8 Satoh, M., Hayashi, M., Komiyama, J. and Iijima, T. Polym. Commun. 1988, 29, 49
- 9 Manning, G. S. J. Chem. Phys. 1969, 51, 924
- 10
- Manning, G. S. Q. Rev. Biophys. 1978, 11, 179 Iwasa, K. and Kwak, J. C. T. J. Phys. Chem. 1977, 81, 408 11
- 12 Satoh, M., Kawashima, T., Komiyama, J. and Iijima, T. Polym. J. 1987, 19, 1191
- Mattai, J. and Kwak, J. C. T. Macromolecules 1986, 19, 1663 Mattai, J. and Kwak, J. C. T. J. Phys. Chem. 1982, 86, 1026 13
- 14 15 Satoh, M., Kawashima, T. and Komiyama, J. Biophys. Chem.
- 1988, 31, 209 16 Kanehiro, H., Komiyama, J., Satoh, M. and Iijima, T. Nihon Kagaku Kaishi 1980, 254
- Millero, F. J., Surdo, A. L. and Shin, C. J. Phys. Chem. 1978, 82, 17 784
- 18 Miyamoto, S. and Imai, N. Biophys. Chem. 1980, 11, 345
- Miyamoto, S. Biophys. Chem. 1981, 14, 341 19
- 20 Conway, B. E., Desnoyers, J. E. and Smith, A. C. Phil. Trans. R. Soc. 1964, 256, 389
- 21 Komiyama, J., Ando, M., Takeda, Y. and Iijima, T. Eur. Polym. J. 1975, 12, 201
- 22 Griffiths, T. R. and Symons, M. C. R. Mol. Phys. 1960, 3, 90
- Joshi, Y. M. and Kwak, J. C. T. Biophys. Chem. 1981, 13, 65 23
- 24 Bockris, J. O'M. and Saluja, P. P. S. J. Phys. Chem. 1972, 76, 2140